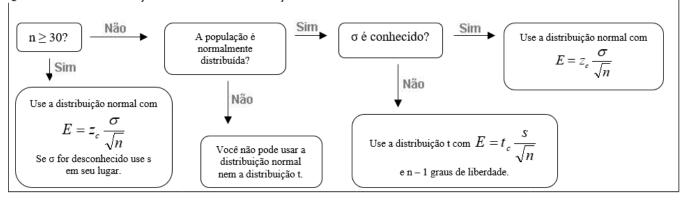
Medidas de tendência central e de dispersão			
	Populacional	Amostral	
Média simples	$\mu = \frac{\sum x_i}{N}$	$\bar{x} = \frac{\sum x_i}{n}$	
Média ponderada	$\mu = \frac{\sum w_i x_i}{\sum w_i}$	$\bar{x} = \frac{\sum w_i x_i}{\sum w_i}$	
Variância	$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$	$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$	
Desvio padrão	$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$	$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$	


Probabilidade e distribuições probabilísticas		
Probabilidade	$P(X) = \frac{n(X)}{n(S)}$	
Distribuição Binomial	$P(x) = \frac{n!}{x! (n-x)!} p^{x} (1-p)^{n-x}$	
Distribuição de Poison	$P(x) = \frac{\mu^x \cdot e^{-\mu}}{x!}$	
Distribuição Normal (Requer uso da tabela de distribuição normal)	$z = \frac{x - \mu}{\sigma}$	

Correlação e regressão linear			
Coeficiente de correlação de Pearson	$r = \frac{n.\sum x_i. y_i - (\sum x_i). (\sum y_i)}{\sqrt{(n.\sum x_i^2 - (\sum x_i)^2). (n.\sum y_i^2 - (\sum y_i)^2)}}$		
Regressão linear – Método dos mínimos quadrados	$y^* = ax + b$ $a = \frac{n(\sum xy) - (\sum x \sum y)}{n(\sum x^2) - (\sum x)^2}$ $b = \frac{\sum y - a \sum x}{n}$		
Regressão linear – Reta interpoladora	$y^* = K_y x + (\bar{y} - K_y . \bar{x}) \qquad K_y = r . \frac{s_y}{s_x}$		

Intervalo de confiança para média

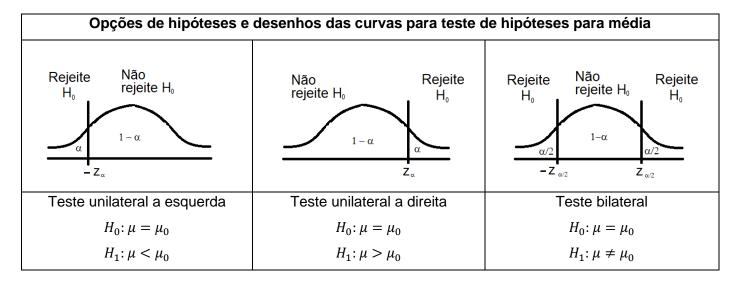
(Requer uso da tabela de distribuição normal completa ou reduzida; ou da tabela t-Student)

Quando usar a distribuição normal ou a distribuição t?_

Intervalo de confiança para média	$\bar{x} - E < \mu < \bar{x} + E$ ou $\bar{x} \pm E$
Tamanho de amostra (n ≥ 30)	$n = \left(\frac{z_c \sigma}{E}\right)^2$

Inter	valo de con	fiança para	média (n≥	30) – Tabel	a reduzida	
Confiança (c)	80%	85%	90%	95%	98%	99%
Z_C	1,28	1,44	1,65	1,96	2,33	2,58

Intervalo de confiança para medidas de dispersão (n < 30) (Requer uso da tabela Qui-Quadrado)


(Requer uso da tabela Qui-Quadrado)		
	Linha: g.l. = n − 1	
Parâmetros para busca na tabela Qui-Quadrado	Colunas: $\chi_R^2 = \frac{(1-c)}{2}$ $\chi_L^2 = \frac{(1+c)}{2}$	
Intervalo de confiança para variância	$\frac{(n-1).s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1).s^2}{\chi_L^2}$	
Intervalo de confiança para desvio padrão	$\sqrt{\frac{(n-1).s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1).s^2}{\chi_L^2}}$	

Teste de hipóteses para média

(Requer tabela de distribuição normal completa ou reduzida)

Passos para testes de hipóteses:

- 1 Determinar o tipo de teste, a significância e as hipóteses, nula e alternativa.
- 2 Calcular estatística de teste com a fórmula adequada.
- 3 Determinar o valor crítico com a tabela adequada e fazer o desenho da área de rejeição.
- 4 Comparar a estatística de teste com o valor crítico e escrever uma conclusão, indicando o teste usado, a significância a rejeição ou não da hipótese nula e o que as evidências mostram sobre o problema.

Fórmula para cálculo da estatística de teste para teste de hipóteses para média	$z = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$
Fórmula para cálculo da estatística de teste para teste de hipóteses envolvendo duas populações.	$z = \frac{(\bar{x}_1 - \bar{x}_2)}{S_{\bar{x}_1 - \bar{x}_2}} \qquad S_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}$
(Teste bilateral – lembrar de dividir a significância)	

Tabela reduz	ida com os valor	es críticos para	as principais sig	nificâncias usad	as (n ≥ 30)
Unilaterais (α)	0,10	0,05	0,025	0,01	0,005
Z_{lpha}	1,28	1,645	1,96	2,33	2,575

Teste de hipóteses Qui-Quadrado de aderência

(Requer tabela Qui-Quadrado)

Fórmula para cálculo da estatística de teste para testes Qui-Quadrado de aderência	$\sum \frac{(O-E)^2}{E}$ O valor esperado pode ser dado pela divisão da soma dos valores pelas ocorrências possíveis.
Instruções para identificação do valor crítico na tabela Qui-Quadrado	Linha: Grau de liberdade Coluna: Significância (Cada linha da tabela do problema tem um valor observado e um valor esperado calculado, o grau de liberdade é o número de linhas menos um.)

Teste de hipóteses Qui-Quadrado de independência

(Requer tabela Qui-Quadrado)

Condições necessárias

- 1 A frequência observada deve ser obtida usando uma amostra aleatória.
- 2 Cada frequência esperada deve ser maior ou igual a cinco.

Fórmula para cálculo da estatística de teste para testes Qui-Quadrado de independência	$\sum \frac{(O-E)^2}{E}$ $E = \frac{(Soma\ da\ linha) \times (Soma\ da\ coluna)}{Tamanho\ da\ amostra}$
Instruções para identificação do valor crítico na tabela Qui-Quadrado	Linha: Grau de liberdade, dado pelo produto entre o antecessor do número de linha da tabela de contingência e o antecessor do número de colunas. $(g.l.=(r-1)\times(c-1))$ Coluna: Significância