+

/

۸

Operadores

Adição

Subtração

Para indicar uma operação ou uma função no Excel, você deve começar com o sinal igual '=' seguido da operação ou da expressão numérica. Use os símbolos na tabela ao lado para construir a expressão.

No Excel existe uma função para raiz quadrada, mas ela não é prática, o ideal é Multiplicação usar potenciaçã seguir $\sqrt[n]{a^m} = a$

Primeiro as operações mais complexas como (1) potenciação e radiciação, seguido

	Manaphoagao	
sar potenciação em todos os casos de radiciação, considerando a propriedade a	Divisão	
eguir $\sqrt[n]{a^m} = a^{\frac{m}{n}}$.	Potenciação	
Quanto a ordem nas operações, o Excel segue as mesmas dos cálculos manuais.	e radiciação	

de (2) multiplicação e divisão e por fim as (3) adições e subtrações. Quando a ordem das operações precisar ser ajustada é usado apenas parênteses, sempre resolvendo as operações nos mais internos de acordo com a ordem supracitada. Jamais use [] e {} para indicar prioridade nas operações no Excel.

B2		- :	×	~	f _x	
4	Α	В		С	D	Е
1						
2						
3						
4						

Cada cédula no Excel tem um nome padrão indicado pela letra da coluna e número da linha, no exemplo ao lado em destaque está a B2. Você pode escrever um cálculo para ser resolvido dentro de uma cédula ou usar outras cédulas como parâmetros para buscar valores para os cálculos.

Existe outras funções matemáticas, ao lado é possível ver algumas, onde no Excel dentro dos () deve ser colocado o valor do argumento a ser usado ou o endereço da cédula onde ele se encontra. Uma exceção ocorre com o valor de π , que no Excel pode ser escrito como =PI(), sem necessitar de argumento dentro dos parênteses, afinal π é uma constante. Para o número de Euler e, use =EXP(1) o que equivale a $e^1 = e$.

Raiz quadrada	=RAIZ()
Cosseno	=COS()
Seno	=SEN()
Exponencial com base e	=EXP()
Logaritmo com base <i>e</i>	=LN()

Atividades

1. Determine a fórmula a ser inserida no Excel para encontrar a solução das expressões numéricas abaixo. Em seguida resolva cada uma e compare os resultados.

a.
$$10 - \frac{18}{(2+1)^2}$$

b.
$$(3-2\cos\pi)^3$$

c.
$$\left(\frac{1}{3} + \frac{1}{2}\right)^2 + \sqrt[3]{8}$$

2. Um educando está fazendo uma planilha para calcular o valor da geratriz (g) de um cone reto, a partir dos valores do raio (r) e da altura (h). A fórmula usada está na célula B5, em destaque. Analisando a planilha abaixo, qual é a equação para geratriz de um cone?

(Adicional) Desenhe um cone e destaque a geratriz. Explique o cálculo a patir do teorema de Pitágoras.

=(B3^2+B4^2)^(1/2) **B5** 1 Cone 2 3 Raio 3 un. 4 Altura 12 un. Geratriz 12,369 un.

3. Complete a tabela abaixo

Expressão manual	Expressão no Excel
$6 - 3^4$	
2 + 5.3	
2(5 – 3)	
	=7*(3/5+8)
$\sqrt{3}$	
$\sqrt{5^3}$	
³ √3 + 5	
$\sqrt[3]{5+3^2}$	
$\frac{3-2^3}{\sqrt{5}}$	
	=5^2+3*7
	=(5+2)/(5-2)
$5 - \frac{3}{2 + \sqrt{3}}$	
$3 + \pi$	
$\cos{(\pi+1)}$	
	=3+EXP(1)
	=5+7/5+2^(1/2)
	=5+7/(5+2^(1/2))
$sen(1/\pi)$	